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Abstract—A physics based large-signal GaAs MESFET model
and circuit simulator has been developed to predict and opti-
mize the yield of GaAs MESFET designs before fabrication.
Device acceptance criteria include both small- and large-signal
RF operating characteristics such as small-signal gain, maxi-
mum power added efficiency, and output power at 1 dB gain
compression. Channel doping details are described directly
from processing specifications for parameters such as material
deposition, ion implantation, and implant annealing. Monte
Carlo techniques are used to estimate yield when disturbances
in the physical parameters are modeled as multivariate
Gaussian distributions. The yield estimator is integrated with
an optimizer so that a design can be cenfered for maximum yield
in the presence of process disturbances.

I. INTRODUCTION

OMPUTER-AIDED DESIGN (CAD) has helped to
improve process yields and the average performance
of monolithic microwave integrated circuits (MMIC’s)
through the application of statistical circuit design tech-
niques. A principal statistical circuit design technique is
yield optimization.
The yield optimization problem can be formulated two
ways:

max {Y @ = SR p@) dv}

or
max {Y(x) = S- p@) o(x +A V) dv}

where x € R", p(v) is the parameter disturbance proba-
bility density function, and R, is the acceptability region.
The acceptance function ¢(x + v) = 1 if (x + v) € R,,.
Otherwise, ¢(x + v) = 0. The first formulation requires
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approximating the region of acceptability and leads to re-
gion of acceptability approaches. The second formulation
is usually solved with Monte Carlo techniques.

A number of different authors proposed region of ac-
ceptability approaches to the yield optimization problem.
Scott and Walker [1] and Leung and Spence [2] pursued
the regionalization method. Regionalization does a direct
search on the space to determine the acceptability region.
The simplicial approach was used by Director er al. [3]-
[5]. The simplicial approach approximates the region of
acceptability with a polyhedron formed by points on the
boundary. The design center is then the center of a hy-
persphere which is contained within the polyhedron. Ab-
del-Malek and Bandler [6]-[8] approximated the accept-
ability region with hyperboxes and linear cuts. The yield
is estimated as the hypervolume of the region of accept-
ability divided by the hypervolume of the tolerance box.
Ellipsoids of decreasing volume were proposed by Abdel-
Malek and Hassan [9]. This method approximates the re-
gion of acceptability with an ellipsoid which is deter-
mined by decreasing the volume, moving the center, and
changing the shape of a starting ellipsoid. The design cen-
ter is then center of the final ellipsoid.

Various authors sought to solve the yield optimization
problem with Monte Carlo techniques. Soin and Spence
[10] advocated a center of gravity method. N Monte Carlo
samples are taken. The centers of gravity of the passed
and failed points are determined. The design center is then
located by a line search along the line joining the centers
of gravity. Stochastic optimization was used by Styblinski
and Ruszczynski [11] and Kjellstrém and Taxén [12]. In
this approach, small sample Monte Carlo yield estimates
are stochastically optimized. Signhal and Pinel [13] intro-
duced parametric sampling. The parametric sampling
technique reuses previous samples when forming a Monte
Carlo yield estimate. The control variate technique [14]
for reducing the Monte Carlo noise in the yield estimate
was used by Hocevar et al. [15] and Soin and Rankin [16],
[17]. Biernacki et al. [18] used efficient quadratic approx-
imation. This technique approximates the circuit response
with a multidimensional quadratic function which reduces
the cost of the Monte Carlo samples. The approximation
is generated from less than the minimum number of basis
points by a maximally flat interpolation technique. Ban-
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dler et al. applied minimization of the generalized [, norm
to yield optimization [19]. Various approaches to gradient
calculation in the context of generalized /, norms are dis-
cussed by Bandler et al. [20]. The /, formulation is used
by Bandler et al. [21] in conjunction with the Khatibza-
deh-Trew MESFET model [22], [23] to optimize an
X-band amplifier.

Reviews of yield optimization and statistical circuit de-
sign techniques are available. Some of this review mate-
rial appears in books by various editors and authors [5],
[24]-[27]. Review papers on the topic include [19], [28].

Most previous yield optimization work is based upon
the use of equivalent circuit models for active devices.
This dependence ultimately limits present generation CAD
since equivalent circuit models do not predict operation
so much as compactly represent measurements on fabri-
cated devices. Equivalent circuit elements do not natu-
rally capture important nonlinearities and interrelation-
ships of the physical entities they represent. Also,
determining improved device design parameters from
equivalent circuit elements is difficult because direct cor-
respondence between physical parameters, equivalent cir-
cuit elements, and RF performance is not easily estab-
lished. Equivalent circuit models do not scale well to
operating regions exterior to those in which the model was
directly calibrated.

In this work, a large-signal GaAs MESFET simulator
for yield estimation and optimization is presented that does
not rely on equivalent circuit techniques. The MESFET
model in the simulator is based upon device physics with
the advantage that a MIMIC can be simulated from pro-
cess data all the way through to RF circuit performance.
The integrated simulator allows a device design to be op-
timized based upon a desired RF performance specifica-
tion. Small- and large-signal power amplifier performance
measures are used for the yield pass-fall criterion. The
yield optimizer’s variables are physical parameters such
as gate dimensions, channel donor distribution specifica-
tions, dc bias voltages, and material parameters. A Monte
Carlo method is.used to predict the process yield of a
nominal MESFET design based upon a single perfor-
mance measures’ variation. The Monte Carlo yield esti-
mate is then optimized using a quasi-Newton method, The
quasi-Newton method is deterministic and is tolerant of
the inherent noise in the yield estimate.

The resulting simulator has proven to be accurate under
both class A and B operating conditions. Since simula-
tions can be performed before fabrication, significant
time, effort, and expense can be saved in the development
of advanced MMIC’s.

Section II describes the components of the simulator
pertinent to yield optimization. The results of yield op-
timization experiments on an ion implanted device, a bur-
ied channel device, and a uniform channel device are pre-
sented in Section III.

II. SsMmuLaTOR COMPONENTS

Computer optimization of the yield of a device using
physical variables requires an algorithm that integrates a
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physical model for the device, a method for computing
performance measures, a yield estimation method, and an
optimization algorithm. Pertinent aspects of these com-
ponents are discussed in this section.

A. Device Model

The device model used in this work [22], [23] is based
upon an efficient, analytic solution of the basic semicon-
ductor device equations. The device model is quasi-static
and is based upon an analytic formulation of the charge
dipole domain within the conducting channel. This for-
mulation has, in turn, resulted in the derivation of a self-
consistent large-signal analytic MESFET model that can
easily be implemented in microwave CAD simulators. The
time domain analytic device model is interfaced with an
RF circuit by means of the harmonic balance method to
produce an efficient and accurate nonlinear device/circuit
microwave simulator.

A recent enhancement of the MESFET model for use
with ion-implanted devices is the incorporation of SU-
PREM 3.5 [29]. SUPREM 3.5 calculates the MESFET
channel donor distribution resulting from process se-
quences which may include material deposition and etch-
ing, dopant diffusion, ion implantation, or implant an-
nealing. With this enhancement, a design can be specified
in terms of process variables instead of donor distribu-
tions.

The model, when embedded in a harmonic balance sim-
ulator, has been verified to accurately predict the dc and
RF behavior of several commercial devices [22]. For ex-
ample, Fig. 1 demonstrates the measured and simulated
RF performance for a commercial 0.5 um gate length ion-
implanted power GaAs MESFET at 10 GHz. The device
was operated class A at a drain bias of V; = —6.5 V.
The physical parameters used in the simulation are indi-
cated. The generator and load impedances for the funda-
mental, second, and third harmonics are also indicated.
The excellent agreement between the measured and sim-
ulated data results from inclusion of the major saturation
mechanisms in a GaAs MESFET. These mechanisms are
forward conduction and reverse breakdown of the gate
electrode [30], [31]. Models for these mechanisms suit-
able for integration into the simulator have been devel-
oped [32].

The MESFET model is embedded in a linear circuit as
shown in Fig. 2. The harmonic balance algorithm solves
for the voltages and currents in the circuit when Vgen has
some specified value. Using this system, performance
measures applicable to MESFET power amplifiers are
computed.

B. Performance Measures

The performance measures fall into three different
classes: small-signal transducer gain, measures associ-
ated with gain compression levels, and measures associ-
ated with maximum power added efficiency.
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Fig. 1. Comparison of measured and TEFLON simulated data. (a) Three
RF performance characteristics of a MESFET (operational gain, output
power delivered to the load, and operational power added efficiency). (b)
MESFET, circuit, and bias parameter values during simulation.
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Fig. 2. The complete TEFLON RF circuit schematic. The intrinsic FET
block represents the physics based Khatibzadeh-Trew model.
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The small-signal transducer gain is given by

ave =% Z (PldB - P];,dB)
where P, 4 is the RF power in dBm available from the
generator Vgen and P, 4 is the RF power in dBm deliv-
ered to the load. The four values of P, 4z are specified by
the user, and they must be in the small-signal regime. The
small-signal transducer gain has no other associated per-
formance measures.

The gain compression measures result from solution of

(Py,ap(Pg,ap) — P, (Gwe = Gc) =0 Py eR

g,dB) -

where Gc is a gain compression level in dB and is user
selectable as 1, 3, or 6 dB. The Van Wijingaarden-Dek-
ker-Brent root finding algorithm [33] is used to solve the
above equation. Once the root of the equation is found,
the available performance measures are P, 45, and P, 4p at
the solution.

The final class of performance measures result -from
max1mlzlng the expression for the power added effi-
ciency,

P/(P) — P

PAE = ————
Pdc(Pg)

ng\e R

where P, is the RF power in mW delivered to the load, Pgb

" is the RF power in mW available from the generator, and

P, is the dc power in mW delivered to the transistor.
Brent’s method [33] is used for this 1-D optimization. The
resulting performance measures are the PAE and P,, P,
and P;/P, at the maximum.

Optlmlzatlons using these performance measures reveal
the need for additional constraints beyond an optimization
variable hyperbox. These constraints are implemented as
penalty functions on the measures. A penalty function is
invoked under the following conditions:

1. the device pinch-off voltage V,, is not within
- bounds, :
2. the dc bias is not within bounds, ‘
3. the device power gain is Iess than a minimum value,
and
4. the power flow at the 1st harmonic is into the 'RF
source (i.e., the device is oscillating).

C. Yz:eld Estimation Method

Small but uncontrollable disturbances in the fabrication
process result in devices with geometries and doping pro-
files that deviate somewhat from nominal values. These
variations in primary process parameters are statistically
simpler than the derivative variations of parameters for a
corresponding equivalent circuit. For example, gate width
and length are practically independent and both are un-

" correlated with ion implant dose or energy. A problem

with equivalent circuit based yield approaches is that vari-
ations in equivalent circuit parameter values such as gy,
R;, Cy, Cy, Cy, and gy, correlate significantly With each
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other [34]-[36]. Moreover, second order correlations
(even large ones) may not suffice to characterize varia-
tions in equivalent circuit parameters [37].

In the approach presented here disturbances in physical
parameters are easily characterized by a second order sta-
tistical model, a multivariate Gaussian. A multivariate
Gaussian is specified by a mean vector and a covatiance
matrix. The mean vector is simply the nominal device de-
sign. The covariance matrix models the variances and
covariances between physical parameters.

Given the covariance matrix C for the parameter dis-
turbance probability density function p(v), the yield at
some nominal design, x, is estimated by the following
Monte Carlo algorithm:

1. Input mean or nominal design x,

2. Generate a set of N disturbances v; from the distri-
bution p (v) [33], [38],

3. Approximate the yield as

Y(x) = %?qs(x + v;).

In a Monte Carlo yield calculation, many devices are
evaluated in the vicinity of a nominal design. In regions
where the performance measure is relatively smooth, it is
possible to use nearby points without incurring unaccept-
able estimation errors. The batch size of a Monte Carlo
calculation sets a limit on expected precision which can
be related to derivatives of the performance measure to
determine when it is appropriate to replace a numerically
intensive performance measure calculation with a previ-
ously simulated result.

To reduce run times a simple memory system which
maintains a binary tree database of previous simulations
is incorporated. When a new design is to be evaluated,
the tree is searched for a similar design. If a previously
calculated design and the desired design are within a user
specified neighborhood of each other, the stored perfor-
mance measure is returned. Otherwise, the device model
is called and the simulation result is-recorded in the tree.
This memory system gives a piecewise constant interpo-
lation to the performance measure.

The neighborhood is a single hyperbox from an equal
volume grid of the optimization constraint hyperbox. In
each dimension, the edge of a neighborhood hyperbox is
27M times the corresponding edge of the optimization
constraining hyperbox. M is a user specified integer that
determines the factional neighborhood hyperbox volume.
Thus, the neighborhood hyperbox volume is 27MD times
the constraining hyperbox volume. D is the number of
dimensions in the space. For the yield optimization re-
sults presented in Section III, M was set to 4.

This memory system will reduce the number of calls by
varying amounts dependent upon the particular device de-
sign, the degree of nonlinearity, the number of distur-
bance parameters, and the extent of previous data. For the
yield optimization results presented in Section III, the
number of calls is reduced by 17%. As the memory grows
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larger the number of calls is further reduced. Reductions
as high as 65% are observed for large memories.

Earlier work using linear interpolations of the memory
data provided greater reductions of device model calls.
Reductions as high as 90% were observed. However, lin-
ear interpolations provide accurate approximations only if
the data being interpolated is relatively smooth. When lin-
early interpolating in the vicinity of a step penalty func-
tion, large approximation errors result. For this reason,
the piecewise constant interpolation approach was used.

D. Mathematical Optimizer

The final component of the yield optimization algo-
rithm is the mathematical optimizer. A primary consid-
eration in developing the optimizer was the inherent noise
of the Monte Carlo yield estimate. The noise is approxi-
mately given by [14], [28]

Y(l — Y)

var (Y) = N ,
where Y is the estimate of the yield and N is the simulated
batch size. This noise term led to the development of the
optimization algorithm discussed below. Using this op-
timizer, batch sizes of 100 are necessary for successful
performance although batch sizes as small as 50 can be
useful for preliminary experiments.

The optimizer is a projected quasi-Newton algorithm
that utilizes a decreasing sequence of finite difference steps
(scales) to approximate the yield gradient. This decreas-
ing sequence of scales permits this deterministic algo-
rithm to deal with the Monte Carlo noise in the yield es-
timate. The algorithm uses an efficiently calculated
approximation to the Hessian and a line search algorithm
that gives the code global convergence properties.

A mathematical description of the problem of con-
strained optimization goes as follows:

min f: Q — R where
Q

Q={xeR\i=x,<u,i=1,---

, n}.

The set of points @ is called the hyperbox, and | equals
-Y.

The optimization code is a variation of Newton’s
method for unconstrained optimization described later in
this section.

During yield optimization the function f to be mini-
mized is of the form: f(x) = f(x) + Af(x) where f(x) is
the negative of the true yield, ¢, and A f(x) is Monte Carlo
noise. This noise creates a large number of local minima.
¢ may itself have local minima that are not the global
minima. This effect may be a consequence of physical
phenomena or of error in the harmonic balance simulation
used to compute f These local minima will trap most gra-
dient based algorithms. However, by utilizing a sequence
of scales to approximate the gradient these local minima
can be avoided, and the global minima can be found up
to the level of noise.
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The novel feature of the optimization algorithm is this
sequence of scales. The first elements in the sequence of
finite difference steps are fairly large, approximately half
the length of the hyperbox. The approximate gradient ob-
tained using these scales gives global information about
the problem and allows the sequence of quasi-Newton
steps to avoid local minima. As the sequence continues,
the length of the scales decreases so that the approximate
gradient gives more local information. As the algorithm
steps through the sequence of scales the code becomes
more of a local algorithm having the fast local conver-
gence properties of quasi-Newton methods. Thus, the se-
quence of scales allows the algorithm to avoid the local
minima generated by the noise and also have fast local
convergence properties.

When computing the yield gradient with different for-
mulas, an important consideration is minimizing the vari-
ance or noise in the gradient estimate. The method of
common random numbers [14] was applied to reduce the
gradient variance. This method requires that during gra-
dient computations every evaluation of f be computed
with the same sequence of random disturbances.

In Newton’s method the Hessian must be computed at
each point to calculate the step. Because analytic second
derivatives are not available and because the cost of func-
tion evaluations is too high to use a difference Hessian,

an approximation to the Hessian is used. The most suc-

cessful approximation yet applied is the SR1 (symmetric
rank one). This approximation is given by the following
formula:

Where S° and S~ are the current and previous SR1 ap-
proximations to the Hessian respectively, s~ = x — x~,
where x° and x~ are the current and the previous points
in the sequence defined by the optimization algorithm re-
spectively, and, ¥~ = y~ — S757, where y~ = Vf(x°)
— Vf(x™). Note that calculating the SR1 approximation
to the Hessian does not involve taking any extra function
evaluations and hence is far cheaper than using a differ-
ence Hessian.

Some notation that will be used later is now defined.
The projection ¢ of a vector v onto the hyperbox Q is
given by the following formula

u, ifo; > u;
=S v, ifl <v <u,.
l; ifo, <
A description of the algorithm is as follows:

1. Given x°, h, S°, calculate f(x°), Vf(x°), and y =
&€ — VFED. If

| < .minscal
="

set h = 0.5h, and S° = I. If h < minscal or f >

lx¢ —
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Jmax terminate, otherwise return to 1. Where minscal
is the minimal scale used and f,,,, is the maximum
possible value for f. Minscal is an estimate of the
minimum distance between points in the hyperbox
for which an appreciable difference in the value of
f can be detected. For yield optimization f < 1,
however, f.x is set to 0.98 for this application.

2. Otherwise update S° as described above. Check if
§¢ is positive definite. If it is not, set S° = I. In our
code positive definiteness of the matrix is checked
in the Linpack code DCHDC [39], a double preci-
sion Cholesky decomposition routine. Setting S¢ =
I if the approximate Hessian is not positive definite
guarantees that the step is always a descent direc-

. tion.
3. Solve §% = Vf(x°). If || pll =< h then set
_ b
P pn P

The matrix equation is solved by use of the Linpack
subroutines DCHDC and DPOSL [39]. First
DCHDC does a Cholesky decomposition on the ma-
trix and then DPOSL solves the factored system.

4. Calculate the cut back factor o for the step. If || apl|
< h,seth = 0.5h, and S = I, and return to 1.

5. Calculate x* = (x° — ap)". Where x" indicates the
next step in the sequence of points defined by the
optimization algorithm. If f(x*) =< f(x°) -
10~*aVfp, then set x° = x* and return to 1. Oth-
erwise return to 4.

The line search algorithm [40] is as follows:

If no previous cutbacks for this p have been made, set
a=1.Ifx} = u;and x{ # u; orx; = I and x{ # [, for
any i set « = 0.5&. Where & is the previous cut back
factor that was used to calculate x*. If & is the first cut
back factor for this p such that x;° # w; if x{ # u; and
x;i # L if x{ # I, for every i, then calculate 8 the unique
minimizer of

(f&° = ap) — f&x°) — aVfx)p)B°
+ aVF(x)pB + fx°).

If3€10.1,0.5]set ¢ = Bé&. If B > 0.5 set a = 0.54.
If3 <0.1seta =0.14.
Otherwise calculate v the local minimizer to

ay® + by + V) py + F(°),

where:
1 —1
[a} 1 & @
b a—al|l -& &
2 &2

. [f(x“ - ap) - f&x°) - Vf(xC)TP&}
fx© = &p) — f(x) — VF)pé ]
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Where & is the cutback factor previous to &. The local
minimizer to this cubic polynomial is,

_ =b+ N/ 3aVf(x)p
T 3a
Ify > 05&seta = 0.54. If v < 0.1& set o = 0.14.
Otherwise o = 7.

HI. YLD OPTIMIZATION EXPERIMENTS

The simulator is used to conduct a series of yield op-
timization experiments. Three types of MESFET devices
are selected: an ion implanted device, a buried channel
device, and a uniform channel device. The ion implanted
MESFET design is based upon a commercial device that
had been empirically optimized by a standard procedure
for maximum power-added efficiency. The device is ca-
pable of good RF performance and, as will be shown, the
simulator is not able to alter the design to obtain signifi-
cant maximum PAE improvements. The buried channel
MESFET design is based upon an industrial device, but
it is a nonoptimum prototype. The simulator significantly
modifies the original design to improve performance. The
starting design for the uniform channel MESFET is de-
termined using standard, first principle design techniques.
The initial design proves not to be optimum and is also
significantly modified by the simulator to obtain improved
performance. Starting from these MESFET designs, the
yield of each device structure relative to to small-signal
transducer gain, output power at 1 dB gain compression,
and maximum power added efficiency is optimized. All
devices are embedded in a 50 © circuit so that perfor-
mance variations based upon device design, rather than
circuit tuning conditions, can be investigated.

The experiments are conducted by selecting the exper-
iment variables and estimating the disturbance covariance
matrices. The variables are selected by performing a sen-
sitivity analysis on each device structure. The variables
to which the performance measures are most sensitive are
included. These variables, for all the device types, are
those that specify the gate geometry, the channel donor
distribution, and the dc bias. The variables for each de-
vice type are listed in Table I. For these experiments the
gate length is perturbed about the nominal manufacturable
value which is held fixed and is not subject to optimiza-
tion. Previous experience indicated that the optimizer al-
ways drives gate length to its minimum permitted value.

Each device’s variables are assumed to be statistically
independent. The covariance matrices are, therefore, di-
agonal. The diagonal elements are the squares of esti-
mated standard deviations for each variable. In all cases,
except the gate width, the standard deviations are taken
to be 3% to 10% of the nominal values for initial designs,
The gate width standard deviation is estimated to be the
gate length standard deviation times the number of gate
fingers. The variances are listed in Table I.

A number of other conditions are specified for the ex-
periments. Three harmonics are used during harmonic
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balance calculations. The simulated circuit is reduced as
shown in Fig. 3. The impedances presented to the gate
and drain of the MESFET, as previously indicated, are 50
+ jO Q at all harmonics. During each yicld optimization,
the number of sample devices for each yield estimate is
100. The number of sample devices in the presented yield
histograms is 500.

In Figures 4, 5, and 6 the initial and optimized yield
histograms are shown for ion implanted, buried channel,
and uniform channel devices when small-signal trans-
ducer gain is the acceptance criterion. The optimizations
require 151, 116, and 66 yield estimates, respectively.
The three initial designs all have similar initial gain dis-
tributions with means varying from 5.1 to 5.9 (7.1 dB to
7.7 dB) while the standard deviations range from 0.7 to
1.1. The buried channel device exhibits the best improve-
ment with a distribution mean increasing to 16.0. All the
optimized distributions exhibit greater spread than their
corresponding initial distributions. The standard devia-
tions of the optimized designs range from 1.4 t0 2.3. The
increased spread results from the optimized designs being
in a region whete the gain is more sensitive to perturba-
tions in the design parameters. For all three devices the
optimizer changes the gate width the most. These changes
improve the matching between the transistor and the 50 Q
circuit. This large change in gate width would not nec-
essarily be expected for a tuned circuit. The buried and
uniform channel devices exhibit large changes in their
biases. For both devices, Vg and Vpp increase. This bias
shift is to a region of higher transconductance. The in-
creased transconductance improves the small-signal gain.

Figs. 7, 8, and 9 show the initial and optimized yield
histograms for ion implanted, buried channel, and uni-
form channel devices when output power at 1 dB gain
compression is used as the acceptance criterion. The op-
timizations require 181, 180, and 152 yield estimates, re-
spectively. The initial designs, again, have similar per-
formance. The initial design distribution means range
from 253 to 316 mW while the standard deviations vary
from 55 to 71 mW. The uniform channel device shows
the greatest increase in distribution mean to 2283 mW.,
However, the distribution spread is more than twice that
of the two other optimized designs. In all three cases, the
optimized designs show marked improvement over the in-
itial designs. Again, the optimizer changes the gate widths
of all three devices the most. However in this case, the
increased gate widths allow more RF current to flow
through the devices, thereby increasing the RF power. The
impedance matching becomes a secondary consideration.
For the buried and uniform devices Vi and Vp, increase
considerably. Vpp, is also markedly increased for the ion
implanted device. The biases change, along with the
channel doping and gate width, so as to maximize the in-
tersection of the 50 © load line and the device I-V curves.

Yield optimization using maximum power added effi-
ciency as the acceptance criterion is also performed. Figs.
10, 11, and 12 show the initial and optimized yield his-
tograms for ion implanted, buried channel, and uniform
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. : TABLE I
DIAGONAL ELEMENTS IN DISTURBANCE COVARIANCE MATRICES FOR ION IMPLANTED DEVICE, BURIED CHANNEL DEVICE, AND UNIFORM DEVICE

Ton Implanted Device

Buried Channel Device

Uniform Channel Device

Variable Variance Variable Variance " Variable Variance
L 1.6 x 10~% (um)? L, 1.6 X 107 (um)? T 1.6 X 1073 (um)?
W 4.0 x 1072 (um)? W, 2.6 X 10 2 (pm)® W, 4.0 x 1072 (pm)?
Ef 5.6 % 10! (keV)? fiow 1.7 % 1076 (;,Lm) -~ 2.3 x 10°* (um)?
D 1.4 X 10% (ions/cm?)? thigh 5.3 X 107° (um)® <al 2.5 % 10*' (ions /cm’)?
Voo 1.0 x 1072 (V)? Nigs 5.6 x 10°! (ions /cm’)? Vee 2.5 x 107> (vy?
Voo 9.0 X 1072 (V)? Nuign 1.6 X 10% (ions/cm’)? Voo 9.0 x 1072 (V)?
Voo 2.5 x 10 (V) '
Vob 9.0 X 1072 (V)?
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Fig. 3. The circuit simulated during yield optimizations. Referring to the ," “\
full TEFLON schematic, the admittance blocks Yin and Yout are replaced 0 / S
with through networks, the impedance block Zs i§ rcPlaced with a short 0 5 10 15 20 25 30
circuit, and the_ Zfb block is replaced by an open circuit. Small signal transducer gain
’ (a)
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i ig. 5. Results of yield optimization on a buried channel device usin
Parameter Design Fig. 5. Resuls of yield op buried channel d g
: A | B small-signal transducer gain ¢riteria. (a) Simulated histograms: Design A—
initial design. Design B—optimized design. (b) Initial and optimized de-
L.. (#m) 0.40 0.40 vice parameter values. .
g . :
W (pm) 1000 609,
E (keV) 150 v 133 channel devices. The optimizations require 143, 63, and
D ( ions) 4.0 % 10™2 | 3.7 x 102 203 yield estimates, respectively. The initial designs in -
cm? ‘ ‘ this case are not all similar. The initial uniform channel
Vee (V) -2.0 -2.1 design has a distribution mean of 19%, whereas, the ini-
Vop (V) 6.0 6.2 tial ion implanted and buried channel designs have distri-
bution means of 38.5% and 40.0%, respectively. Yield
® optimization improved the uniform channel design’s dis-

Fig. 4. Results of yield optimization on a ion‘implanted device using small-
signal transducer gain criteria. (a) Simulated histograms: Design A—initial
design. Design B—optimized design. (b) Initial and optimized device pa-
rameter values.

tribution mean to 40.9%, but the optimized buried chan-
nel design has the best performance with a distribution
mean of 47.6%. No improvement is noted in the ion im-
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histograms: Design A—initial design. Design B—optimized design. (b) Initial and optimized device parameter values.
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Fig. 8. Results of yield optimization on a buried channel device using 1 dB gain compression output power criteria. (a) Simu-
lated histograms: Design A—initial design. Design B—optimized design. (b) Initial and optimized device parameter values.

planted design. This result is anticipated since the ion im- cur in the gate width and the dc bias. The changes in gate
planted initial design is based on a mature industry device width improve the match to the 50 @ circuit. The bias
which has been empirically optimized for maximum power points shift in such a way as to minimize the dc power
added efficiency. As is the case with the gain and output supplied to the device while maximizing the intersection
power at 1 dB gain compression, the largest changes oc-  of the 50 { load line and the device I-V curves.
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Fig. 9. Results of yield optimization on a uniform channel device using 1 dB gain compression output power criteria. (a)
Simulated histograms: Design A—initial design. Design B—optimized design. (b) Initial and optimized device parameter values..
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Fig. 11. Results of yield optimization on a buried channel device using maximum power added efficiency criteria. (a) Simulated
histograms; Design A—initial design. Design B—optimized design. (b) Initial and optimized device parameter values.

Different optimum device designs result for each of the
specified performance criteria. That is, an optimum PAE
design is different from an optimum design for either
maximum output power or gain. This series of experi-
ments indicates that the buried channel device is the best

device structure of the three when gain and power added
efficiency are of primary concern. The uniform channel
device gives the best average performance for output
power at 1 dB gain compression, but the performance dis-
tribution exhibits excessive variance. These result, of
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Fig. 12. Results of yield optimization on a uniform channel device using
maximum power added efficiency criteria. (a) Simulated histograms: De-
sign A—initial design. Design B—optimized design. (b) Initial and opti-
mized device parameter values.

course, only apply to the devices embedded in a 50 @
circuit. Different results are possible when circuit tuning
conditions are considered.

IV. CoNCLUSION

A large-signal physics based GaAs MESFET and cir-
cuit simulator for yield estimation and optimization has
been developed. The simulator’s yield pass-fail criteria
are small- and large-signal performance measures for
power amplifiers. For investigation of ion-implanted de-
vices SUPREM 3.5, a GaAs process simulator, has been
incorporated so that pertinent process variables directly
specify the MESFET’s channel donor distribution. The
yield is estimated with a Monte Carlo algorithm. The op-
timizer used for maximizing the yield estimate is a quasi-
Newton algorithm which uses decreasing gradient scales
to overcome the estimate’s Monte Carlo noise. The op-
timizer can alter the device design, RF circuit, and oper-
ating parameters until a maximized yield for a given per-
formance specification is achieved. In this manner design
centering can be performed. Since the device model is
physics based, design optimization can be performed be-
fore fabrication. Use of the simulator should allow sig-
nificant reductions in the time and costs required to pro-

duce MIMIC circuits.
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