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Abstract–A physics based large-signal GaAs MESFET model

and circuit simulator has been developed to predict and opti-

mize the yield of GaAs MESFET designs before fabrication.
Device acceptance criteria include both small- and large-signal
RF operating characteristics such as small-signal gain, maxi-

mum power added efficiency, and output power at 1 dB gain
compression. Channel doping details are described directly
from processing specifications for parameters such as material

deposition, ion implantation, and implant annealing. Monte
Carlo techniques are used to estimal,e yield when disturbances

in the physical parameters are modeled as multivariate

Gaussian distributions. The yield estimator is integrated with

an optimizer so that a design can be centered for maximum yield
in the presence of process disturbances.

I. INTRODUCTION

c OMPUTER-AIDED DESIGN (CAD) has helped to

improve process yields and the average performance

of monolithic microwave integrated circuits (MMIC ‘s)

through the application of statistical circuit design tech-

niques. A principal statistical circuit design technique is

yield optimization. ‘

The yield optimization problem can be formulated two

ways:

my[y(x)= JRAP(@dv] ‘

or

{!

m

max Y(x) =
1.

P (v) @ + v) dv
x. —m

where x e R”, p(v) is the parameter disturbance proba-

bility density function, and R~ is the acceptability region.

The acceptance function @(x + v) = 1 if (x + u) e R~.

Otherwise, +(x + v) = O. The first formulation requires
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approximating the region of acceptability and ‘leads to re-

gion of acceptability approaches. The second formulation

is usually solved with Monte Carlo techniques.

A number of different authors proposed region of ac-

ceptability approaches to the yield optimization problem.

Scott and Walker [1] and Leung and Spence [2] pursued

the regionalization method. Regionalization does a direct

search on the space to determine the acceptability region.

The simplicial approach was used by Director et al. [3]-

[5]. The simplicial approach approximates the region of

acceptability with a polyhedron forhed by points on the

boundary. The design center is then the center of a hy -

persphere which is contained within the polyhedron. Ab-

del-Malek and Bandler [6]-[8] approximated the accept-

ability region with hyperboles and linear cuts. The yield

is estimated as the hypervolume of the region of accept-

ability divided by the hypervolume of the tolerance box.

Ellipsoids of decreasing volume were proposed by Abdel-

Malek and Hassan [9]. This method approximates the re-

gion of acceptability with an ellipsoid which is deter-

mined by decreasing the volume, moving the center, and

changing the shape of a starting ellipsoid. The design cen-

ter is then center of the final ellipsoid.

Various authors sought to solve the yield optimization

problem with Monte Carlo techniques, Soin and Spence

[10] advocated a center of gravity method. N Monte Carlo

samples are taken. The centers of gravity of the passed

and failed points are determined. The design center is then

located by a line search along the line joining the centers

of gravity. Stochastic optimization was used by Styblinski

and Ruszczynski [11] and Kjellstrom and Tax?m [12]. In

this approach, small sample Monte Carlo yield estimates

are stochastically optimized. Signhal and Pinel [13] intro-

duced parametric sampling. The parametric sampling

technique reuses previous samples when forming a Monte

Carlo yield estimate. The control variate technique [14]

for reducing the Monte Carlo noise in the yield estimate

was used by Hocevar et al. [15] and Soin and Rankin [16],

[17]. Biernacki et al. [18] used efficient quadratic approx-

imation. This technique approximates the circuit response

with a multidimensional quadratic function which reduces

the cost of the Monte Carlo samples. The approximation

is generated from less than the minimum number of basis

points by a maximally flat interpolation technique. Ban-
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dler et al. applied minimization of the generalized 1Pnorm

to yield optimization [19]. Various approaches to gradient

calculation in the context of generalized 1Pnorms are dis-

cussed by Bandler et al. [20]. The 1Pformulation is used

by Bandler et al. [21] in conjunction with the Khatibza-

deh-Trew MESFET model [22], [23] to optimize an

X-band amplifier.

Reviews of yield optimization and statistical circuit de-

sign techniques are available. Some of this review mate-

rial appears in books by various editors and authors [5],

[24] -[27]. Review papers on the topic include [19], [28].

Most previous yield optimization work is based upon

the use of equivalent circuit models for active devices.

This dependence ultimately limits present generation CAD

since equivalent circuit models do not predict operation

so much as compactly represent measurements on fabri-

cated devices. Equivalent circuit elements do not natu-

rally capture important nonlinearities and interrelation-

ships of the physical entities they represent. Also,

determining improved device design parameters from

equivalent circuit elements is difficult because direct cor-

respondence between physical parameters, equivalent cir-

cuit elements, and RF performance is not easily estab-

lished. Equivalent circuit models do not scale well to

operating regions exterior to those in which the model was

directly calibrated.

In this work, a large-signal GaAs MESFET simulator

for yield estimation and optimization is presented that does

not rely on equivalent circuit techniques. The MESFET

model in the simulator is based upon device physics with

the advantage that a MIMIC can be simulated from pro-

cess data all the way through to RF circuit performance.

The integrated simulator allows a device design to be op-

timized based upon a desired RF performance specifica-

tion. Small- and large-signal power amplifier performance

measures are used for the yield pass-fall criterion. The

yield optimizer’s variables are physical parameters such

as gate dimensions, channel donor distribution specifica-

tions, dc bias voltages, and material parameters. A Monte

Carlo method is used to predict the process yield of a

nominal MESFET design based upon a single perfor-

mance measures’ variation. The Monte Carlo yield esti-

mate is then optimized using a quasi-Newton method, The

quasi-Newton method is deterministic and is tolerant of

the inherent noise in the yield estimate,
The resulting simulator has proven to be accurate under

both class A and B operating conditions. Since simula-

tions can be performed before fabrication, significant

time, effort, and expense can be saved in the development

of advanced MMIC’s.

Section II describes the components of the simulator

pertinent to yield optimization. The results of yield op-

timization experiments on an ion implanted device, a bur-

ied channel device, and a uniform channel device are pre-

sented in Section III.

II. SIMULATOR COMPONENTS

Computer optimization of the yield of a device using

physical variables requires an algorithm that integrates a

physical model for the device, a method for computing

performance measures, a yield estimation method, and an

optimization algorithm. Pertinent aspects of these com-

ponents are discussed in this section.

A. Device Model

The device model used in this work [22], [23] is based

upon an efficient, analytic solution of the basic semicon-

ductor device equations. The device model is quasi-static

and is based upon an analytic formulation of the charge

dipole domain within the conducting channel. This for-

mulation has, in turn, resulted in the derivation of a self-

consistent large-signal analytic MESFET model that can

easily be implemented in microwave CAD simulators. The

time domain analytic device model is interfaced with an

RF circuit by means of the harmonic balance method to

produce an efficient and accurate nonlinear device/circuit

microwave simulator.

A recent enhancement of the MESFET model for use

with ion-implanted devices is the incorporation of SU-

PREM 3.5 [29]. SUPREM 3.5 calculates the MESFET

channel donor distribution resulting from process se-

quences which may include material deposition and etch-

ing, dopant diffusion, ion implantation, or implant an-

nealing. With this enhancement, a design can be specified

in terms of process variables instead of donor distribu-

tions.

The model, when embedded in a harmonic balance sim-

ulator, has been verified to accurately predict the dc and

RF behavior of several commercial devices [22]. For ex-

ample, Fig. 1 demonstrates the measured and simulated

RF performance for a commercial 0.5 pm gate length ion-

implanted power GaAs MESFET at 10 GHz. The device

was operated class A at a drain bias of V~~ = – 6.5 V.

The physical parameters used in the simulation are indi-

cated. The generator and load impedances for the funda-

mental, second, and third harmonics are also indicated.

The excellent agreement between the measured and sim-

ulated data results from inclusion of the major saturation

mechanisms in a GaAs MESFET. These mechanisms are

forward conduction and reverse breakdown of the gate

electrode [30], [31]. Models for these mechanisms suit-

able for integration into the simulator have been devel-

oped [32].

The MESFET model is embedded in a linear circuit as

shown in Fig. 2. The harmonic balance algorithm solves

for the voltages and currents in the circuit when Vgen has

some specified value. Using this system, performance

measures applicable to MESFET power amplifiers are

computed.

B. Performance Measures

The performance measures fall into three different

classes: small-signal transducer gain, measures associ-

ated with gain compression levels, and measures associ-

ated with maximum power added efficiency.
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Fig. 1. Comparison of measured and TEFLON simulated data, (a) Three

RF performance characteristics of a MESFET (operational gain, output

power delivered to the load, and operational. power added efficiency). (b)
MESFET, circuit, and bias parameter values during simulation.
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Fig. 2. The complete TEFLON RF circuit schematic. The intrinsic FET
block represents the physics based Khatibzadeh-Trew model.

The small-signal transducer gain is given by

where P~, dB is the RF power in dBm available from the

generator Vgen and Pl, ~B is the RF power in dBm deliv-

ered to the load. The four values of P8, ~~ are specified by

the user, and they must be in the small’-signal regime. The

small-signal transducer gain has no other associated per-

fo~ance measures.

The gain compression measures result from solution of

(pl,dB(pg,dB) – Pg,dB) – (G.,. – G(-) = O pg,d~E R

where Gc is a gain compression level in dB and is user

selectable as 1, 3, or 6 dB”. The Van Wijingaarden-Dek-

ker-Brent root finding algorithm [33] is used to solve the

above equation. Once the root of the equation is found,

the available performance measures are Pg, dB, and Pl, d~ at

the solution,

The final class of performance measures result from

maximizing the expression for the power added effi-

ciency,

P1(P8) – Pg
PAE = P8+R

‘dc(pg )

where P1 is the RF power in mW delivered to the load, Pg

is the RF power in mW available from the generator, and

P& is the dc power in mw’ delivered to the transistor.

Brent’s method [33] is used for this 1-D optimization. The

resulting performance measures are the PAE and P~, Pi,

and P1/Pg at the maximum.

Optimizations using these performance measures reveal

the need for additional constraints beyond an optimization

variable hyperbox. These constraints are implemented as

penalty functions on the measures. A penalty function is

invoked under the following conditions:

1. the device pinch-off voltage VPO is not within

bounds,

2. the dc bias is not within, bounds,

3. the device power gain is less than a minimum value..
and

4. the power flow at the 1st harmonic is into the RF

source (i.e., the device is oscillating).

C. Yield Estimation Method

Small but uncontrollable disturbances in the fabrication

process result in devices with geometries and doping pro-

files that deviate somewhat from nominal values. These

variations in prima~ process parameters are statistically

simpler than the derivative variations of parameters for a

corresponding equivalent circuit. For example, gate width

and length are practically independent and both are un-

correlated with ion implant dose or energy. A problem

with equivalent circuit based yield approaches is that vari-

ations in equivalent circuit parameter values such as g~,

Ri, Cg., Cdg, Cd,, ancl gds correlate significantly with each
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other [34] –[36]. ‘Moreover, second order correlations

(even large ones) may not suffice to characterize varia-

tions in equivalent circuit parameters [37].

In the approach presented here disturbances in physical

parameters are easily characterized by a second order sta-

tistical model, a multivariate Gaussian. A multivariate

Gaussian is specified by a mean vector and a covariance

matrix. The mean vector is simply the nominal device de-

sign. The covariance matrix models the variances and

covanances between physical parameters.

Given the covariance matrix C for the parameter dis-

turbance probability density function p(v), the yield at

some nominal design, x, is estimated by the following

Monte Carlo algorithm:

1.

2.

3.

In

Input mean or nominal design x,

Generate a set of N disturbances vi from the distri-

bution p (v) [33], [38],

Approximate the yield as

Y(x) = !#(x+u i).

a Monte Carlo yield calculation, many devices are

evaluated in the vicinity of a nominal design. In regions

where the performance measure is relatively smooth, it is

possible to use nearby points without incurring unaccept-

able estimation errors. The batch size of a Monte Carlo

calculation sets a limit on expected precision which can

be related to derivatives of the performance measure to

determine when it is appropriate to replace a numerically

intensive performance measure calculation with a previ-

ously simulated result.

To reduce run times a simple memory system which

maintains a binary tree database of previous simulations

is incorporated. When a new design is to be evaluated,

the tree is searched for a similar design. If a previously

calculated design and the desired design are within a user

specified neighborhood of each other, the stored perfor-

mance measure is returned. Otherwise, the device model

is called and the simulation result is recorded in the tree.

This memory system gives a piecewise constant interpo-

lation to the performance measure.

The neighborhood is a single hyperbox from an equal

volume grid of the optimization constraint hyperbox. In

each dimension, the edge of a neighborhood hyperbox is

2-M times the corresponding edge of the optimization

constraining hyperbox. M is a user specified integer that

determines the factional neighborhood hyperbox volume.

Thus, the neighborhood hyperbox volume is 2-MD times

the constraining hyperbox volume. D is the number of

dimensions in the space. For the yield optimization re-
sults presented in Section III, M was set to 4.

This memory system will reduce the number of calls by

varying amounts dependent upon the particular device de-

sign, the degree of nonlinearity, the number of distur-

bance parameters, and the extent of previous data. For the

yield optimization results presented in Section III, the

number of calls is reduced by 17%. As the memory grows

larger the number of calls is further reduced. Reductions

as high as 65% are observed for large memories.

Earlier work using linear interpolations of the memory

data provided greater reductions of device model calls.

Reductions as high as 90% were observed. However, lin-

ear interpolations provide accurate approximations only if

the data being interpolated is relatively smooth. When lin-

early interpolating in the vicinity of a step penalty func-

tion, large approximation errors result. For this reason,

the piecewise constant interpolation approach was used.

D. Mathematical Optimizer

The final component of the yield optimization algo-

rithm is the mathematical optimizer. A primary consid-

eration in developing the optimizer was the inherent noise

of the Monte Carlo yield estimate. The noise is approxi-

mately given by [14], [28]

Y(l – Y)
var (Y) = ~ ,

where Y is the estimate of the yield and N is the simulated

batch size. This noise term led to the development of the

optimization algorithm discussed below. Using this op-

timizer, batch sizes of 100 are necessary for successful

performance although batch sizes as small as 50 can be

useful for preliminary experiments.

The optimizer is a projected quasi-Newton algorithm

that utilizes a decreasing sequence of finite difference steps

(scales) to approximate the yield gradient. This decreas-

ing sequence of scales permits this deterministic algo-

rithm to deal with the Monte Carlo noise in the yield es-

timate. The algorithm uses an efficiently calculated

approximation to the Hessian and a line search algorithm

that gives the code global convergence properties.

A mathematical description of the problem of con-

strained optimization goes as follows:

min f. Q ~ R where
Q

Q={~~R’’lli~~,~~l,i=l,””. ,n}.

The set of points Q is called the hyperbox, and ~ equals

– Y.

The optimization code is a variation of Newton’s

method for unconstrained optimization described later in

this section,
During yield optimization the function ~ to be mini-

mized is of the form: ~(x) = ~(x) + A~(x) where ~(x) is

the negative of the true yield, ~, and A~(x) is Monte Carlo

noise. This noise creates a large number of local minima.

7 may itself have local minima that are not the global

minima. This effect may be a consequence of physical
phenomena or of ~rror in the harmonic balance simulation

used to compute f. These local minima will trap most gra-

dient based algorithms. However, by utilizing a sequence

of scales to approximate the gradient these local minima

can be avoided, and the global minima can be found up

to the level of noise.
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The novel feature of the optimization algorithm is this

sequence of scales. The first elements in the sequence of

finite difference steps are fairly large, approximately half

the length of the hyperbox. The approximate gradient ob-

tained using these scales gives global information about

the problem and allows the sequence of quasi-Newton

steps to avoid local minima. As the sequence continues,

the length of the scales decreases so that the approximate

gradient gives more local information. As the algorithm

steps through the sequence of scales the code becomes

more of a local algorithm having the fast local conver-

gence properties of quasi-Newton methods. Thus, the se-

quence of scales allows the algorithm to avoidl the local

minima generated by the noise and also have fast local

convergence properties.

When computing the yield gradient with diflerent for-

mulas, an important consideration is minimizing the vari-

ance or noise in the gradient estimate. The method of

common random numbers [14] was applied to reduce the

gradient variance. This method requires that during gra-

dient computations every evaluation of ~ be computed

with the same sequence of random disturbances.

In Newton’s method the Hessian must be computed at

each point to calculate the step. Because analytic second

derivatives are not available and because the cost of func-

tion evaluations is too high to use a difference Hessian,

an approximation to the Hessian is used. The most SUC-’

cessful approximation yet applied is the SR 1 (symmetric

rank one). This approximation is given by the following

formula:

Where S’ and S” are the current and previous SR1 ap-

proximations to the Hessian respectively, s- = xc – x-,

where xc and x– are the current and the previous points

in the sequence defined by the optimization algorithm re-

spectively, and, r– = y- – S ‘s-”, where y- = V’(x=)

– V~(x- ). Note that calculating the SR1 approximation

to the Hessian does not involve taking any extra function

evaluations and hence is far cheaper than using a differ-

ence Hessian.

Some notation that will be usedl later is now defined.

The projection VA of a vector v onto the hyperbox Q is

given by the following formula

[

u, if Vi >. Ui

v; = Vj, ifll 5 VjSU 1,

lj, ifvleli ‘

A description of the algorithm is as follows:

1. Given xc, h, S“, calculate f(xc), V’(x”), and y =

(Xc – Vf(xc))”. If

Ilxc - yll s .%

set h = 0.5h, and S’ = Z. If h < minscal or f >

2,

3,

4.

5.

1357

f~,. terminate, otherwise return to 1. Where minscal
is the minimal scale used and f~,X is the maximum

possible value for fi A4inscal is an estimate of the

minimum distance between points in the hyperbox

for which an appreciable difference in the value of

f can be detected. For yield optimization f s 1,

howew:r, .f~., is set to 0.98 for this application.

Otherwise update S’ as described above. Check if

S’ is positive definite. If it is not, set S’ = Z. In our

code positive definiteness of the matrix is checked

in the ILinpack code DCHDC [39], a double preci-

sion Cholesky decomposition routine. Setting S’ =

1 if the approximate Hessian is not positive definite

guarantees that the step is always a descent direc-

tion.

Solve SCp = Vf(xc). If Ilpll s h then set

p = 11:11‘“
The matrix equation is solved by use of the Linpack

subroutines DCHDC and DPOSL [39]. First

DCHDC does a Cholesky decomposition on the ma-

trix and then DPOSL solves the factored system.

Calculate the cut back factor a for the step. If II cYpll

< h, set h = 0.5h, and S’ = Z, and return to 1.

Calculate x+ = (xc – CYP)A. Where x+ indicates the

next step in the “sequen~e of points defined by the

optimization algorithm. If f (x+) s f (x C) –

10-4aV’’Tp, then set x c = x+ and return to 1. Oth-

erwise return to 4.

The line search algorithm [40] is as follows:

If no previous cutbacks for this p have been made, set

a = 1. Ifx~ = uiandx~ ~ uiorxl~ = liandx~ # lifer

any i set a = O.5&. Where & is the previous cut back

factor that was used to calculate x+. If ii is the first cut

back factor for this p such that x: # Ui if x ~ # ui and

x: # li if x ~ # lj for every i, then calculate 6 the unique

minimizer of

(f (xc - &p) - f(xc) - avf(xc)>)p’

+ (wf(xc)Tpp + f(xc).

Iff? 6 [0.1, 0.5] set u = fl~. If~ > 0.5 set a = 0,5&.

If/3 < O.lsetu =0.lti.

Otherwise calculate T the local minimizer to

a-y3 + b-y2 + Vf(xc)Tpy + f(xc),

where:

[:l=+[j~]

‘[

f(xc – &p) – f(xc) – vf(x’)~a

1f(xc – &/p) – f(xc) – Vf(xc)>a “
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Where & is the cutback factor previous to &. The local

minimizer to this cubic polynomial is,

–b + Jb2 – 3aVf (x’)Tp
~=

3a

If ~ > 0.5& set a = 0,5&. If -y < O.l& set a = O.l&.

Otherwise a = y,

III. YIELD OPTIMIZATION EXPERIMENTS

The simulator is used to conduct a series of yield op-

timization experiments. Three types of MESFET devices

are selected: an ion implanted device, a buried channel

device, and a uniform channel device. The ion implanted

MESFET design is based upon a commercial device that

had been empirically optimized by a standard procedure

for maximum power-added efficiency. The device is ca-

pable of good RF performance and, as will be shown, the

simulator is not able to alter the design to obtain signifi-

cant maximum PAE improvements. The buned channel

MESFET design is based upon an industrial device, but

it is a nonoptimum prototype. The simulator significantly

modifies the original design to improve performance. The

starting design for the uniform channel MESFET is de-

termined using standard, first principle design techniques.

The initial design proves not to be optimum and is also

significantly modified by the simulator to obtain improved

performance. Starting from these MESFET designs, the

yield of each device structure relative to to small-signal

transducer gain, output power at 1 dB gain compression,

and maximum power added efficiency is optimized. All

devices are embedded in a 50 !J circuit so that perfor-

mance variations based upon device design, rather than

circuit tuning conditions, can be investigated.

The experiments are conducted by selecting the exper-

iment variables and estimating the disturbance covariance

matrices. The variables are selected by performing a sen-

sitivity analysis ‘on each device structure. The variables

to which the performance measures are most sensitive are
included. These variables, for all the device types, are

those that specify the gate geometry, the channel donor

distribution, and the dc bias. The variables for each de-

vice type are listed in Table 1. For these experiments the

gate length is perturbed about the nominal manufacturable

value which is held fixed and is not subject to optimiza-

tion. Previous experience indicated that the optimizer al-
ways drives gate length to its minimum permitted value.

Each device’s variables are assumed to be statistically

independent. The covariance matrices are, therefore, di-

agonal. The diagonal elements are the squares of esti-
mated standard deviations for each variable. In all cases,

except the gate width, the standard deviations are taken

to be 3 % to 10% of the nominal values for initial designs,

The gate width standard deviation is estimated to be the

gate length standard deviation times the number of gate

fingers. The variances are listed in Table I.

A number of other conditions are specified for the ex-

periments. Three harmonics are used during harmonic

balance calculations. The simulated circuit is reduced as

shown in Fig. 3. The impedances presented to the gate

and drain of the MESFET, as previously indicated, are 50

+ jO f2 at all harmonics. During each yield optimization,

the number of sample devices for each yield estimate is

100. The number of sample devices in the ‘presented yield

histograms is 500.

In Figures 4, 5, and 6 the initial and optimized yield

histograms are shown for ion implanted, buried channel,

and uniform channel devices when small-signal trans-

ducer gain is the acceptance criterion. The optimizations

require 151, 116, and 66 yield estimates, respectively.

The three initial designs all have similar initial gain dis-

tributions with means varying from 5.1 to 5.9 (7.1 dB to

7.7 dB) while the standard deviations range from 0.7 to

1.1. The buried channel device exhibits the best improve-

ment with a distribution mean increasing to 16.0. All the

optimized distributions exhibit greater spread than their

corresponding initial distributions. The standard devia-

tions of the optimized designs range from 1.4 to 2.3. The

increased spread results from the optimized designs being

in a region where the gain is more sensitive to perturba-

tions in the design parameters. For all three devices the

optimizer changes the gate width the most. These changes

improve the matching between the transistor and the 50 Q

circuit. This large change in gate width would not nec-

essarily be expected for a tuned circuit. The buried and

uniform channel devices exhibit large changes in their

biases. For both devices, V~~ and V~~ increase. This bias

shift is to a region of higher transconductance, The in-

creased transconductance improves the small-signal gain,

Figs. 7, 8, and 9 show the initial and optimized yield

histograms for ion implanted, buried channel, and uni-

form channel devices when output power at 1 dB gain

compression is used as the acceptance criterion. The op-

timization require 181, 180, and 152 yield estimates, re-

spectively. The initial designs, again, have similar per-

formance. The initial design distribution means range

from 253 to 316 mW while the standard deviations vary

from 55 to 71 mW. The uniform channel device shows

the greatest increase in distribution mean to 2283 mW.

However, the distribution spread is more than twice that

of the two other optimized designs. In all three cases, the

optimized designs show marked improvement over the in-

itial designs. Again, the optimizer changes the gate widths

of all three devices the most, However in this case, the
increased gate widths allow more RF current to flow

through the devices, thereby increasing the RF power. The

impedance matching becomes a secondary consideration.
For the buried and uniform devices V~~ and V~~ increase

considerably. V~~ is also markedly increased for the ion

implanted device. The biases change, along with the

channel doping and gate width, so as to maximize the in-

tersection of the 500 load line and the device I-V curves.

Yield optimization using maximum power added effi-

ciency as the acceptance criterion is also performed. Figs.

10, 11, and 12 show the initial and optimized yield his-

tograms for ion implanted, buried channel, and uniform
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TABLE I

DIAGONAL ELEMENTS tNDISTURBANCE (COVARIANCE MATR1cBS FORIONIMPLANTBD DBvlcE, BuRIEDCHANNEL DEvlcE, AND UN1FoRMDEv1CE

Ion Implanted Device Buried Channel Device Uniform Channel Device

Variable Variance Variable Variance Variable Vatiance

L. 1.6 x 10-3 (~m)2 L, 1.6 x 10-3 (~m)z L. 1.6 X 10-3 (prn)2

Wg 4.0 x 10-2 (pm)2 Wg 2.6 x 10-2 (~m)2 W8 4.0 X 10-2 (pm)2

E 5.6 x 10’(keV)2 l,ow 1.7 X 10-6 (~m)2 ‘chnl

1.4 X 1022 (ions/cm2)2
2.3 x 10-4 (pm)2

D lhigh 5.3 X 10-6 (~m)2 NC~nl 2.5 x 1031 (ions/cm3)2
VGG 1.0 x 10-’(v)’ N,O~ 5,6 x 103’ (ions/cm3)2 v

9.0 x 1O-2(V)2
2.5 X 10-3 (V)2

v~~ Nhigh

CG

1.6 x 1033 (ions/cm3)2 v~~
v~~

9.0 x 1O-2(V)2 ‘
2.5 X 10-3 (V)2

v DD 9.0 x 10-* (V)2

...................................................................
30 ~ i

Rgg Lgg

Zgen

r

50+J0 ;

+
Vgen

~ 77
Ldd Rdd /

ln&tpTsic

!

Zload

Lss
50+ jo

Rss

Fet Circuit \
. ............... .......... . . . ........ ................. ...

*
Fig. 3. Thecircxri tsimulatedduring yield optirnizations. Refemngtothe
full TEFLON schematic, the admittance blocks Yin and Yout are replaced
with through networks, the impedance block Zs is replaced with a short
circuit, and the Ztlr block is replaced by an open circuit.
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channel de,vices. The optimizations require 143,,63, and

203 yield estimates, respectively. The initial designs in

this case are not all similar. The initial uniform channel

design has a distribution mean of 19%, whereas, the ini-

tial ion implanted and buried channel designs have distri-

bution means of 38.5% and 40.0%, respectively. Yield

optimization improved the uniform channel design’s dis-

tribution mea’n to 40.9%, but the optimized buried chan-

nel design has the best performance with a distribution

mean of 47.6%. No improvement is noted in the ion im-
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planted design. This result is anticipated since the ion im- cur in the gate width and the dc bias. The changes in gate

planted initial design is based on a mature industry device width improve the match to the 50 Q circuit. The bias
which has been empirically optimized for maximum power points shift in such a way as to minimize the dc power

added efficiency. As is the case with the gain and output supplied to the device while maximizing the intersection

power at 1 dB gain compression, the largest changes oc- of the 50 Q load line and the device I-V curves.
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Different optimum device designs result for each of the device structure of the three when gain and power added

specified performance cfiteria. That is, an optimum PAE efficiency are of primary concern. The uniform channel

design is different from an optimum design’ for either device gives the best average performance for output

maximum output power or gain. This series of experi- power at 1 dB gain compression, but the performance dis-

ments indicates that the buried channel device is the best tribution exhibits excessive variance. These result, of
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maximum power added efficiency criteria. (a) Simulated histograms: De-
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mized device parameter values.

course, only apply to the devices embedded in a 50 !2

circuit. Different results are possible when circuit tuning

conditions are considered.

IV. CONCLUSION

A large-signal physics based GaAs MESFET and cir-

cuit simulator for yield estimation and optimization has

been developed. The simulator’s yield pass-fail criteria

are small- and large-signal performance measures for
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